ZHENYU WEI

EDUCATION

Shanghai Jiao Tong University (SJTU), China

B.E. in Computer Science (Zhixuan Honors Program of Engineering)

Sep. 2021 - Jun. 2025 (expected)

GPA: 4.01/4.3 (92.45/100)

PUBLICATIONS

1. $\mathcal{D}(\mathcal{R}, \mathcal{O})$ Grasp: A Unified Representation for Cross-Embodiment Dexterous Grasping [Web] Zhenyu Wei*, Zhixuan Xu*, Jingxiang Guo, Yiwen Hou, Chongkai Gao, Zhehao Cai, Jiayu Luo, Lin Shao In submission to IEEE International Conference on Robotics & Automation (ICRA 2025)

2. Auto-Pairing Positives through Implicit Relation Circulation for Discriminative Self-Learning Bo Pang, Zhenyu Wei, Jingli Lin, Cewu Lu

In submission (Minor Revisions) to IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI)

RESEARCH EXPERIENCE

Research Intern, Machine Vision and Intelligence Group

Oct. 2022 - May 2024

Advisor: Prof. Cewu Lu

Shanghai Jiao Tong University, China

Auto-Pairing Positives through Implicit Relation Circulation for Discriminative Self-Learning

- We propose the Implicit Relation Circulation (IRC) framework, leveraging cycle consistency to automatically discover positive pairs from easily obtainable pairs within simpler tasks.
- We apply IRC to tasks such as learning pixel-level relations from image-level pairs, 3D temporal point cloud relations, and leveraging language for image representation without pre-existing vision-language pairs.
- **Contribution:** Design and implement the dense vision module, enhancing pixel-level contrastive learning by integrating image- and pixel-level relations, resulting in a more effective pretrained model.

Research Assistant, LinS Lab

Jun. 2024 - present

2022

Advisor: Prof. Lin Shao

National University of Singapore, Singapore

$\mathcal{D}(\mathcal{R}, \mathcal{O})$ Grasp: A Unified Representation for Cross-Embodiment Dexterous Grasping

- We propose a novel representation, $\mathcal{D}(\mathcal{R},\mathcal{O})$, tailored for dexterous grasping tasks. This interaction-centric formulation transcends conventional robot-centric and object-centric paradigms, facilitating robust generalization across diverse robots, objects, and environments.
- We propose a configuration-invariant pretraining approach that learns correspondences across different robot configurations, thereby enhancing the model's capability to capture motion constraints for robotic hands.
- We perform extensive experiments in both simulation environments and real-world settings, validating the efficacy of our proposed representation and framework in grasping novel objects with multiple robots.

AWARDS

The Tung Foundation Scholarship (Top 5%)

Huawei Scholarship (Top 5%)
2023

Outstanding Scholarship of Computer Science Alumni Fund (Top 5%)

• Zhiyuan Honors Scholarship (Top 5%) 2021 & 2022 & 2023

• SJTU Merit Student & Merit Scholarship (Top 10%) 2022 & 2023

SKILLS

Language Chinese (Native), English (TOEFL: 104), Japanese (amateur) **Programming** Python, C/C++, HTML, CSS, Assembly Language, Verilog

Tools Linux, Vim, Arduino